Skip to main content

Graphene...came to change the world!

Atomic-scale honeycomb lattice made of carbon atoms
What is it?
It is a thin layer of pure carbon. A single, tightly packed layer of carbon atoms that are bonded together in a hexagonal honeycomb lattice.

Properties
It’s one atom thick, stronger than steel, harder than diamond, nearly transparent, and one of the most conductive materials on earth.

Graphene's electrons
In ordinary, three-dimensional metals, electrons hardly interact with each other. But graphene’s two-dimensional, honeycomb structure acts like an electron superhighway in which all the particles have to travel in the same lane. The electrons in graphene act like massless relativistic objects, some with positive charge and some with negative charge.

Behaviour
When the strongly interacting particles in graphene were driven by an electric field, they behaved not like individual particles but like a fluid that could be described by hydrodynamics.
Graphene is a metal that behaves like water!

Expectations

  • replace silicon in electronics
  • increase the efficiency of batteries
  • the durability and conductivity of touch screens
  • pave the way for cheap thermal electric energy


Uses
It's an inorganic-organic hybrid useful in:

  • Molecular Engineering
  • Thin Film
  • Hybrids
  • Energy Application
  • Analytical Application
  • Synthesis



Although the creation of high quality graphene is a very expensive and complex process, you can try create a simpler form on your home...






Reference: seas.harvard.edu ~ graphenea.com ~ wikipedia.com

Comments

Popular posts from this blog

Penguinone: this is how chemistry community honors Penguins!

What is it? Penguinone is an organic compound with the molecular formula C10H14O. It's name comes from the fact that it's 2-dimensional molecular structure resembles a penguin. The systematic name of the molecule is 3,4,4,5-tetramethylcyclohexa-2,5-dienone. Properties Density: 0.9±0.1 g/cm3 Boiling Point: 215.0±30.0 °C (at 760 mmHg) Vapour Pressure: 0.2±0.4 mmHg at 25°C Enthalpy of Vaporization: 45.1±3.0 kJ/molFlash Point: 79.1±19.5 °C Index Of Refraction: 1.470 Polarizability: 18.1cm3 H- NMR spectrume of Penguinone References: wikipedia.com ~ chemspider.com ~ nmrdb.org

Limonene...a majestic odor in nature!

What is it? Limonene is a colorless liquid hydrocarbon classified as a cyclic terpene. Where can we find it? It is a major constituent in several citrus oils (orange, lemon, mandarin, lime, and grapefruit). Name Limonene takes its name from the lemon, as the rind of the lemon -like other citrus fruits- contains considerable amounts of this compound, which contributes to their odor. Properties IUPAC name: 1-Methyl-4-(1-methylethenyl)-cyclohexeneMolecular Formula: C10H16 Average mass: 136.234Melting Point: -74.35 °C Boiling Point:176 °C Chiral rotation: 87°-102° Isomerism Carbon number four of the cyclohexene ring is chiral. Limonene therefore has two optical isomers. Chiral centres are labelled as R or S using IUPAC nomenclature. But we can found it as d or l or most commonly with (+) or (-). The two enantiomers have identical chemical properties but different odours. R-Limonene smells like orange and S-Limonene smells like lemon. Enantiomers Exception

When casein gets company...milk turn into plastic!

"Plastic made from milk" —that certainly sounds like something made-up. If you agree, you may be surprised to learn that in the early 20th century, milk was used to make many different plastic ornaments —including jewelry for Queen Mary of England!         Plastic from milk    ~    Casein Plastic    ~    Galalith What is it Galalith? Galalith (Erinoid in the United Kingdom) is a synthetic plastic material manufactured by the interaction of casein and formaldehyde. Given a commercial name derived from the Greek words gala (milk) and lithos (stone), it is odourless, insoluble in water, biodegradable, antiallergenic, antistatic and virtually nonflammable. What is Casein? Casein is the name for a family of related phosphoproteins. These proteins are commonly found in mammalian milk, making up 80% of the proteins in cow's milk and between 20% and 45% of the proteins in human milk. Casein has a wide variety of uses, from being a major compon